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I. INTRODUCTION

Soliton interactions are a class of phenomena that have
been studied extensively over the years. There are several
reasons for this. First, in the diverse fields in which solitons
play a dominant role~including many important applications
to nonlinear optics, solid state, plasma physics, fluid dynam-
ics, etc.!, the interaction may be a crucial factor in determin-
ing physical properties of the soliton-bearing systems@1#. In
particular, it is often necessary to have a detailed understand-
ing of the interaction processes in order to draw a full benefit
from the solitons in applications. Important examples are the
soliton-based optical communication systems@2# and nonlin-
ear optical switches@3#. Second, the completely elastic inter-
actions between solitons in integrable systems are a unique
property that distinguishes genuine solitons from ordinary,
stable solitary waves.

In this paper we investigate soliton interactions in the
Manakov model. The Manakov equations describe, under
certain conditions, nonlinear interaction between the or-
thogonal polarization components of an electromagnetic
wave propagating in a nonlinear Kerr medium@4#. They can
be viewed as an integrable generalization of the nonlinear
Schrödinger~NLS! equation@5#. In optical fibers, the Mana-
kov system arises in certain polarization-preserving birefrin-
gent fibers@6#, and, more importantly, in long fibers with
randomly rotating polarization axes, which is the case for
most standard fibers; in this case, the Manakov equations
appear as a result of averaging over the rapid random rota-
tion of the axes@7–9#. In a normalized form, the Manakov
system can be written as follows:
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whereu andv are envelopes of the two polarization compo-
nents of the electromagnetic field. In these equations, we use
the standard ‘‘optical’’ notation@2#, i.e., the evolutional vari-
ablez is the propagation distance along the fiber, whilet is
the so-called retarded time.

Equations~1! and ~2! have attracted renewed attention in
recent theoretical@9–11# and experimental@10# investiga-
tions of interactions between optical solitons in fibers. In this
work, we will describe some physically relevant analytical
solutions ~the two-soliton solution! to Eqs. ~1! and ~2! by
means of the inverse scattering transform~IST!. These ex-
plicit analytical solutions are likely to be very useful when
interaction between arbitrarily polarized soliton pairs in op-
tical fibers is studied. In that sense, this work is a generali-
zation of Gordon’s classical work on soliton interaction in
the scalar~NLS! approximation@12#. Obviously the com-
plexity of the two-soliton solution is much more involved in
the vectorial case, but we will show below that important
physical conclusions can be drawn from these solutions any-
way.

The IST for Eqs.~1! and ~2! was found by Manakov@4#,
who showed that the associated scattering problem is the
matrix equation

d

dt
C5S 2 i z u v

2u* i z 0

2v* 0 i z
D C, ~3!

whereC is a three-element column vector, whose elements
are complex functions ofz and t, andz[j1 ih is the com-
plex eigenvalue. The two polarization components,u and
v, act as potentials in this scattering problem. The main in-
gredient of the IST is to find the functionsu andv for the
given scattering data, i.e., a set of the eigenvaluesz, which is
the discrete component of the scattering data, and coeffi-
cients that determine the asymptotic form of the functions
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C(t) ast→6`. The latter evaluated at the eigenvalues pro-
vide a set of normalization coefficients which for real values
of z constitute the continuous component of the scattering
data.

In general, the inverse scattering problem cannot be
solved in a closed form, but it is explicitly solvable for the
solitons. The solitons can be obtained from a linear system of
algebraic equations. For anN-soliton solution, the scattering
data consist of two parts:N eigenvaluesz1 , . . . ,zn , and
2N residues of the scattering matrix~see@13# for details!,
C11, . . . ,C1N andC21, . . . ,C2N . As u and v evolve with
z according to Eqs.~1! and ~2!, the eigenvaluesz1 , . . . ,zN
remain constant, while the residues have the simplez depen-
dence:

C1n5c1nexp~2i zn
2z!, n51 . . .N, ~4!

C2n5c2nexp~2i zn
2z!, n51 . . .N, ~5!

wherec1n andc2n are complex constants. Since these con-
stants and the eigenvalues are arbitrary, theN-soliton solu-
tion to the Manakov system has 6N free parameters, which
can be compared with 4N parameters for the single-
component NLS soliton. The complexity of the solution is
therefore rapidly increasing withN. However, some free pa-
rameters are actually trivial and can be eliminated by means
of symmetries of the governing equations. These include ar-
bitrary displacements int and z, the scaling transformation
z→m2z,t→mt,u→u/m, and the Galilean boost
z→z,t→t1nz,u→uexp(itn1in2z/2) with arbitrary param-
etersm and n. These symmetries are common to both the
NLS and the Manakov model. In addition, the Manakov
model allows a rotation of the polarization, i.e.,
(u,v)→(ucosu1vsinu,2usinu1vcosu), with an arbitrary
angle u, which can be used to eliminate yet another free
parameter.

The IST for the Manakov system is known in two essen-
tially different forms, based, respectively, on the Marchenko
integral equation and on the Hilbert transformation. Both
techniques involve rather tedious calculations, which we
omit in favor of a discussion of the soliton solutions. A more
detailed account of the Hilbert transformation method can be
found in Ref.@13#. An alternative approach based on Hiro-
ta’s method was recently proposed@11#, although without the
closed-form expressions for the two-soliton solution that we
will present here. A deficiency of that method is that it does
not provide any insight into how the scattering data affect the
solution.

In this paper we will present the explicit form of the two-
soliton solution, and more importantly, discuss how it is re-
lated to the scattering data. This will facilitate the under-
standing of the complicated solution a great deal. Along the
way we manage to unify some previously published exact
solutions@14–16#, and show how they can be obtained as a
limit of the two-soliton solution. The solutions published in
@14–16# have it in common that they are stationary, i.e., the
pulse shapes do not vary with propagation, hence they de-
scribe only the particular kind of the interaction dynamics
when the attractive and repulsive forces between two pulses
exactly balance. We will present the more general interaction
scenario when the pulses form an oscillating breather state.

This enables us to analytically explain the numerical findings
in, e.g., @9#, and to present an explicit expression for the
pulse separation as a function ofz. The latter is an important
result which is likely to be of great use in the theory of
soliton communication systems, since it analytically ex-
presses how the interaction strength between neighboring
pulses depends on the pulse separation and relative polariza-
tion. Finally, we will consider the merging-eigenvalue solu-
tions to the Manakov system, which form a particular kind of
interaction with a logarithmic, rather than linear or periodic,
pulse divergence.

II. THE SOLITON SOLUTIONS

A. One eigenvalue—a single soliton

In the case of one discrete eigenvalue, theN51 soliton
can be written in a convenient vector form as

~u* ,v* !5 i
c

ucu
2h

exp@2i ~j22h2!z12i t j#

cosh@2h~ t1t012jz!#
, ~6!

where the initial position of the soliton is given by
t05 ln(2h/ucu)/2h. The vector c[(c11,c21) has arbitrary
complex components, which together with the complex ei-
genvaluez[j1 ih give us six parameters of the one-soliton
solution. Note that each of these six parameters is explicitly
related to a particular symmetry of the underlying equations:
the phases ofc11 andc21 determine arbitrary phase constants
of theu andv fields,ucu determines the initial positiont0, the
parameteruc11u/uc21u determines the arbitrary polarization
angle of the soliton, and, finally, the imaginary and real parts
of the eigenvalue correspond to the above-mentioned Gal-
ilean and scaling invariances.

B. Two eigenvalues—the two-soliton solution

1. The general solution

In accordance with what was said above, the most general
form of the Manakov two-soliton solution involves twelve
parameters, so it rather quickly becomes quite complex.
Therefore, we will first adopt some simplifying assumptions
that will allow us to obtain useful but yet nontrivial results.
First of all, soliton-soliton collisions have been well studied,
so we are not interested in solitons that move relative to each
other. Thus we will assume that the eigenvalues are purely
imaginary and will consider comoving soliton states~breath-
erlike solutions! only. The general two-soliton solution to the
Manakov system satisfying this limitation can be written as

~u* ,v* !54D21 (
n51,2

Qmn , ~7!

wherem51 and 2 correspond, respectively, tou andv, and
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Qmn5hn~h11h2!
4Cmnexp„2~hnt12h32n!t…

1~21!nh32n~h12h2!~h11h2!
3~ uC1nu2

1uC2nu2!Cm,32nexp~2h32nt !22~21!n

3h1h2~h12h2!~h11h2!
2Cmn

3~C1n* C1,32n1C2n* C2,32n!exp~2h32nt !, ~8!

D5~h11h2!
4exp„4~h11h2!t…14h1h2~h11h2!

2

3~C11C12* 1C11* C121C21C22* 1C21* C22!

3exp„2~h11h2!t…1~h11h2!
4@~ uC11u21uC21u2!

3exp~4h2t !1~ uC12u21uC22u2!exp~4h1t !#

14h1h2~h12h2!
2uC11C222C12C21u2

1~h12h2!
4~ uC11u21uC21u2!~ uC12u21uC22u2!. ~9!

Here, the quantitiesCmn are the same as in Eqs.~4! and~5!.
The solution~7! contains ten free parameters, as it as-

sumesj15j250. However, according to what was said
above, four of these parameters can be eliminated by obvious
symmetry transformations. Further, the sum of the eigenval-
ues gives the soliton’s energy according to
*2`

1`(uuu21uvu2)dt54(h11h2), which can be scaled out.
Hence, there remain only five truly nontrivial parameters.

The solution~7! is still too complex for straightforward
applications. Let us now consider some special cases, in or-
der to obtain tractable but yet nontrivial explicit solutions,
which will be of interest for physical applications.

2. Two nonzero residues

Setting two of the four residuescmn equal to zero, one
retrieves previously known elementary solutions to the
Manakov system. We will briefly consider them here for the
sake of completeness. We can distinguish three separate
cases. First, ifc125c2250, we obtain once again the one-
soliton solution presented above. Second, ifc215c2250, we
conclude thatv50. Hence we obtain the ordinary two-
soliton solution to the NLS equation.

The third case is more interesting. It corresponds to
c125c2150, so that the resulting two-soliton solution has six
free parameters. After dropping the arbitrary phase constants
in u andv, and making use of the scaling transformation to
scale the eigenvalues according to the normalization condi-
tion h1,25

1
26a, the resulting two-soliton solution has three

free parameters witha being a fourth one. This two-soliton
solution can be cast into the form

u5
4h1@exp~u2!12aexp~2u2!#exp~2ih1

2z!

2cosh~u12u2!1exp~u11u2!14a2exp~2u12u2!
,

~10!

v5
4h2@exp~u1!22aexp~2u1!#exp~2ih2

2z!

2cosh~u12u2!1exp~u11u2!14a2exp~2u12u2!
,

~11!

where we have introduced the notationu152h1t1t1, u2
52h2t1t2, t15 ln(2h1/uc11u),t25ln(2h2/uc22u). This solution
has been discovered previously by Tratnik and Sipe@14#, and
in a simplified form (t15t250) by Christodoulides and Jo-
seph@15#. Menyuk@6# has presented a more general solution
than Eqs.~10! and ~11! by allowing complex eigenvalues,
i.e., j1,256d.

A characteristic feature of the solution~10! and ~11! is
that it is stationary, i.e., the corresponding intensity profiles
do not change withz ~the more general solutions correspond-
ing to the complex eigenvalues@6# are nonstationary; they
describe a collision between two solitons!. These profiles
include two-humped structures@14,15#. Such a solution in
the form of two pulses which propagate as a stationary co-
moving state, with no apparent interaction, does not exist in
the scalar NLS equation, and is therefore a peculiarity of the
Manakov model. A particularly interesting feature of this
two-soliton solution seems to have been missed in previous
works. Starting with Eqs.~10! and ~11!, one then sets
t15t25

1
2ln(2a). Then one finds thatu is symmetric andv is

antisymmetric with respect tot50:

~u,v !5A2a
„4h1cosh~2h2t !exp~ i2h1

2z!,4h2sinh~2h1t !exp~ i2h2
2z!…

2a cosh~2t !1cosh~4at!
. ~12!

In the limit a!1, this solution can be written in the approxi-
mate simplified form,

~u,v !'@sech~ t2t0!6sech~ t1t0!#e
2ih1,2

2 z/A2, ~13!

where cosh(2t0)[1/(2a). In Fig. 1, this solution is displayed
for different small values ofa. This shows that it is indeed
possible to obtain two effectively noninteracting stationary
pulses of the same shape, separated by an arbitrary distance.
This requires, however, that their initial shapes and relative
polarization be carefully adjusted. Note also that the polar-

ization of each soliton is slowly rotating with the period
p/4a. Thus, the interaction between solitons in the Manakov
model gives rise not only to motion of their centers but also
to rotation of their polarizations. This fact has been observed
also in more general systems than the Manakov model@17#.

The fact that the interaction between the solitons could be
canceled was originally observed numerically@16#, but Eq.
~12! is the first analytical explanation of this phenomenon. In
practical communication systems, this possibility to effec-
tively cancel the interaction between adjacent solitons by
using proper polarization looks quite promising. However,
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due to difficulties in launching the exact pulse shapes and
polarization states a complete cancellation may not be pos-
sible to achieve in practical communication systems. Never-
theless, already without knowing the exact solution~12! or-
thogonal polarization of adjacent solitons has been
demonstrated to increase the bitrate with a factor of nearly 2
@8#. A physical reason for the effective absence of interaction
between the two pulses in Eq.~12! is that we have a balance
between repulsive and attractive interaction forces. The re-
pulsive force originates from thev components of the pulses
which arep out of phase, and the attractive force is pro-
duced by theu components which are in phase. Notice that
effects generated by competing interactions between two dif-
ferent components of solitons to a Ginsburg-Landau equation
were recently considered in Ref.@18#.

3. Four nonzero residues

This is the most general case, which corresponds to the
solution~7! ~recall that we are dealing only the purely imagi-
nary eigenvalues!. To cast the solution into a more tractable
form, we will now make an additional simplification, assum-
ing all four residuescmn to be in-phase:cmn[2 ikmn with
real kmn . This choice removes only two free parameters, as
the other two are the arbitrary phase constants of theu and
v fields. Eventually, this leaves us with a soliton solution
having six free parameters. It is also convenient to introduce
the vector notation for the residues as follows:
k15(k11,k21), k25(k12,k22), so that the two-soliton solu-
tion can be written as

~u,v !5
2@ei2h1

2z~ t1e
22th21k1e

2th2!1ei2h2
2z~ t2e

22th11k2e
2th1!#

e2t~h11h2!1n1e
22t~h11h2!1n2e

2t~h22h1!1n3e
2t~h12h2!1n4cos„2z~h1

22h2
2!…

, ~14!

where

t15@k1uk2u2~h11h2!2k2~k1•k2!2h2#
h12h2

@2h2~h11h2!#
2 ,

~15!

t25@k2uk1u2~h11h2!2k1~k1•k2!2h1#
h22h1

@2h1~h11h2!#
2 ,

~16!

n15S h12h2

4h1h2~h11h2!
2D 2@ uk1u2uk2u2~h11h2!

2

24~k1•k2!
2h1h2#, ~17!

n25
uk1u2

4h1
2 , ~18!

n35
uk2u2

4h2
2 , ~19!

n452
k1•k2

~h11h2!
2 . ~20!

A rich variety of solitons can be analyzed using this rela-
tively simple explicit solution with its six free parameters.
We defer this to a later work, and focus here on the interac-
tion between pulses with the same shape. Then we can fur-
ther simplify the soliton by choosing a reference plane of
polarization and a temporal constant. We do this so that the
u polarization becomes symmetric and thev polarization
becomes antisymmetric with respect tot50. This choice
renders the denominator of the solution~14! an even function
of t, i.e.,n151 andn25n3. The numerators of the solution
must then be, respectively, even and odd functions oft for
the u and v components. It is possible to show that these
restrictions reduce the number of the free parameters to

three. Finally, this number is reduced to two by normalizing
the eigenvalues as it was done above, i.e.,h15

1
21a and

h25
1
22a. The resulting soliton solution becomes

u~ t,z!52
k11cosh~2th2!e

2ih1
2z1k12cosh~2th1!e

2ih2
2z

cosh~2t !1n2cosh~4ta!1
1

2
n4cos~4za!

,

~21!

v~ t,z!52
k21sinh~2th2!e

2ih1
2z1k22sinh~2th1!e

2ih2
2z

cosh~2t !1n2cosh~4ta!1
1

2
n4cos~4za!

.

~22!

Writing the residue vectors ask1,2[uk1,2u„cos(f1,2),
sin(f1,2)… enables us to express the five parameters,k1 ,k2,
anda in terms of the two anglesf1 andf2 as follows:

2a5
tan~f22f1!

tan~f21f1!
, ~23!

uk1,2u25
sin2~2f2,1!

2sin2~f22f1!cos~f22f1!cos~f21f1!
.

~24!

This form of the Manakov two-soliton solution is appropriate
for the study of interactions between arbitrarily polarized
pulses, and it is possible to translate the two free parameters
into a separation and a relative polarization angle between
the solitons. In particular, by noting that two sech pulses can
be described as sech(t1t)1(t2t)54cosh(t)cosh(t)/
@cosh(2t)1cosh(2t)# we can identify the denominators of the
solution~21! and~22! with cosh(2t)1cosh(2t). This is valid
for a!1, when the pulse separation is large and we can then
write the separation 2t as a function ofz as
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2t' ln@2n21n4cos~4az!#

5 lnF1a sin~f21f1!

sin~f22f1!
@11cos~f22f1!cos~4az!#G .

~25!

It is straightforward to show that this expression reduces to
the NLS result@12# t5 lnucos(2az)/au in the limit f1,2→0. In
fact, in this limit theu field ~21! reduces to the NLS-two-
soliton solution, whereas thev field ~22! vanishes. Another
interesting limit is when the coefficient in front of the cos
term of Eq.~25! vanishes, which occurs whenk1 andk2 are
orthogonal. This is the stationary, effectively noninteracting
solution ~12! discussed previously, and it can be recovered
from Eqs.~21!–~24! in the limit f2→p/2, f1→0. Finally,
one may also note that the simulated case in Ref.@9# ~also
discussed in Ref.@2#! corresponds to Eqs.~21!–~24! with
a'0.01 andf2'1.0.

To express the polarization state of the pulses in terms of
the residue angles, however, is more involved, especially
since the polarization state may vary across a single pulse.
We defer that, together with a more complete analysis of the
solution ~21! and ~22!, to a later publication.

4. The two-soliton solution with merging eigenvalues

The physical relevance of all the particular solutions ob-
tained above~as well as of those found in Refs.@14# and
@15#! is limited by the well-known fact that all the two-
soliton solutions to the scalar NLS equation and the Mana-
kov system are, strictly speaking, unstable, as their ‘‘binding
energy’’ is exactly equal to zero. Hence they can be de-
stroyed by an arbitrary perturbation of the initial state@5#.

Moreover, it was shown@17# that two-humped solitons are
unstable in more general~nonintegrable! models as well.
Nevertheless, this does not mean that the two-soliton solu-
tions are of no physical interest, as this instability may be in
many practically important cases a fairly weak effect, which
does not prevent the occurrence of two-soliton states in an
experiment. Indeed, originally developed soliton lasers pro-
duced two solitons@19#, although lasers producing single
solitons have recently been available, too@19,20#.

Another physically meaningful solution can be obtained
as a limiting form of the ones found above in the case of two
eigenvalues merging and becoming degenerate. Indeed, in a
real optical communication line, one usually tries to create
an array of identical fundamental solitons. However, various
small perturbations give rise to a ‘‘jitter’’ of the solitons@2#,
which will eventually lead to a small difference in the am-
plitudes and phases of neighboring solitons in the array. In
the case when this difference is much smaller than the am-
plitudes of the solitons, their interaction is described by this
limiting solution. Therefore, this seemingly degenerate solu-
tion has, as a matter of fact, a special physical relevance.

For the NLS equation, the limiting form of the two-soliton
solution was obtained already in the original work of Za-
kharov and Shabat@5#, and more recently a slight generali-
zation with an additional free parameter was reported by
Gagnonet al. @21#. It was found that, for this special solu-
tion, the separation between the pulses grows withz propor-
tional to lnz, rather than varying periodically or linearly with
z as is the case for the general two-soliton solution.

Taking this limit of the solution described by Eqs.~21!–
~24!, which corresponds toa→0 andf1 ,f2→f0, we find
thatu andv take the form

FIG. 1. The stationary solution
Eq. ~12! for a50.1 ~dashed!, 0.01
~dash-dotted!, 0.001 ~dotted!, and
0.0001 ~solid!. The u(v) field is
~anti!symmetric aroundt50.
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u~ t,z!54
cos~f0!

Acos~2f0!

cos2~f0!cosht1cos~2f0!@ izcosht2tsinht#

cosh~2t !1cos~2f0!@2t
212z2111tan2~2f0!/2#

eiz/2, ~26!

v~ t,z!54
sin~f0!

Acos~2f0!

2sin2~f0!sinht1cos~2f0!@ izsinht2tcosht#

cosh~2t !1cos~2f0!@2t
212z2111tan2~2f0!/2#

eiz/2, ~27!

where 0,f0,p/4 is the only remaining free parameter. In the limitf0→0, we recover the known solution for the NLS
equation@21#. One may note that the extra free parameter of the solution found by Gagnonet al. @21# destroys the symmetry
of the solution with respect to the pointt50, and therefore it is not possible to retrieve it from Eqs.~21!–~24!. However, using
the more general expression~14!–~20!, one can retrieve those asymmetric solutions as well. In Fig. 2, the solution~25! and
~26! is shown for different values of the parameterf0.

III. CONCLUSION

In conclusion, we have derived the two-soliton solution to Manakov’s equations in the case of purely imaginary eigenval-
ues. The two-soliton solutions have been studied in more detail in some physically relevant cases, including the case of the
merging eigenvalues. The physical relevance of the solutions found has been discussed. The solutions are likely to be of value
for further studies of soliton interaction in the optical fibers. It is also worth noting that the obtained solutions can give clues
to the interaction dynamics between solitary waves in the frequently studied nonintegrable models that resemble the Manakov
system, see, e.g.,@2,6,9,17,19#.
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