PHYSICAL REVIEW E VOLUME 54, NUMBER 5 NOVEMBER 1996

Interactions between polarized soliton pulses in optical fibers: Exact solutions
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We derive an exact expression for the two-soliton solution to the Manakov equations, including the practi-
cally important case of two merging eigenvalues. This solution is a useful tool, e.g., for analysis of interaction
between arbitrarily polarized soliton pulses in optical fibg&L063-651X96)13611-4
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. INTRODUCTION v 1%
i—+5 2z H(ulP+[o[)v =0, @
Soliton interactions are a class of phenomena that have

been studied extensively over the years. There are severgh .., andov are envelopes of the two polarization compo-

reasons for this. First, in the diverse fields in which soIitonsnemS of the electromagnetic field. In these equations, we use
play a dominant rol€¢including many important applications the standard “optical” notatiofi2], i.e., the evolutional vari-

FO nonlmeﬁlr thlcs, S.Ol'd Statﬁ’ p'asm"’% r:f;ysms,'fludld dyn","méblez is the propagation distance along the fiber, wiiis
ics, etc), the interaction may be a crucial factor in etermln-the so-called retarded time.

Equations(1) and(2) have attracted renewed attention in

! fthe i ; i ord g tull b f.‘f’écent theoretical9—11] and experimental10] investiga-
Ing of the interaction processes in order to draw a full benefit;, s of interactions between optical solitons in fibers. In this

from the solitons .in applicatioqs. Important examples are th%\/ork, we will describe some physically relevant analytical
sollton-_based _optlcal communication systdrkand nc_ml_m- solutions (the two-soliton solutionto Egs. (1) and (2) by
ear optical switchef3]. Sec_on_d, the completely elastic inter- means of the inverse scattering transfoti®T). These ex-

YSlicit analytical solutions are likely to be very useful when
) Yinteraction between arbitrarily polarized soliton pairs in op-
stable sphtary waves. . . . . . tical fibers is studied. In that sense, this work is a generali-
In this paper we investigate soliton interactions in the,aiiqn of Gordon's classical work on soliton interaction in

Manakov mé)_d_el. The I\l/!anako_v equa_tlonsb descrlbe,hunde{he scalar(NLS) approximation[12]. Obviously the com-
certain conditions, nonlinear interaction between the ory o of the two-soliton solution is much more involved in

thogonal polarjzatjon components of an electromagnetigne \ectorial case, but we will show below that important
wave propagating Ina nonlinear Kerr mgduﬂn]. They can physical conclusions can be drawn from these solutions any-
be v_!ewed as an integrable generalization of the nonlmea\;va _

Schralinger(NLS) equation5]. In optical fibers, the Mana- The IST for Eqs(1) and(2) was found by Manakoy4],

kov system arises In certain polar|zat|0r_1-preserv_|ng b're.f”n'who showed that the associated scattering problem is the
gent fibers[6], and, more importantly, in long fibers with matrix equation
r

randomly rotating polarization axes, which is the case fo
most standard fibers; in this case, the Manakov equations —i¢

property that distinguishes genuine solitons from ordinar

u
appear as a result of averaging over the rapid random rota- d . v
tion of the axed7-9]. In a normalized form, the Manakov qy=| v il 0w, €)
system can be written as follows: —v* 0 i¢

) whereV is a three-element column vector, whose elements
ou 107 are complex functions of andt, and{=¢+i 7 is the com-

2 2y, —
IE+§W+(|U| *lolHu=0, @ plex eigenvalue. The two polarization componentsand
v, act as potentials in this scattering problem. The main in-
gredient of the IST is to find the functionsanduv for the
*Electronic address: magnus@elm.chalmers.se given scattering data, i.e., a set of the eigenvalyeghich is
"Electronic address: kaup@sun.mcs.clarkson.edu the discrete component of the scattering data, and coeffi-
*Electronic address: malomed@leo.math.tau.ac.il cients that determine the asymptotic form of the functions

1063-651X/96/5¢6)/58027)/$10.00 54 5802 © 1996 The American Physical Society



54 INTERACTIONS BETWEEN POLARIZED SOLITON ... 5803
V¥ (t) ast— £, The latter evaluated at the eigenvalues pro-This enables us to analytically explain the numerical findings
vide a set of normalization coefficients which for real valuesin, e.g.,[9], and to present an explicit expression for the
of £ constitute the continuous component of the scatteringulse separation as a functionofThe latter is an important
data. result which is likely to be of great use in the theory of
In general, the inverse scattering problem cannot bgoliton communication systems, since it analytically ex-
solved in a closed form, but it is explicitly solvable for the presses how the interaction strength between neighboring
solitons. The solitons can be obtained from a linear system gby|ses depends on the pulse separation and relative polariza-
algebraic equations. For &f-soliton solution, the scattering tjon. Finally, we will consider the merging-eigenvalue solu-
data consist of two partN eigenvaluesly, ... ,{n, a@nd  tions to the Manakov system, which form a particular kind of
2N residues of the scattering matrisee[13] for detailS,  jnteraction with a logarithmic, rather than linear or periodic,

Ci1y....CiyandCyy, ... ,Coy. Asu anduv evolve with pulse divergence.

z according to Eqs(l) and(2), the eigenvalueg,, ... ,{n

remain constant, while the residues have the simpmlepen-

dence: Il. THE SOLITON SOLUTIONS
Cin=Cinexp(2i%z), n=1...N, (4) A. One eigenvalue—a single soliton

Con=Conexp(2i{%z), n=1...N, (5) In the case of one discrete eigenvalue, i 1 soliton
can be written in a convenient vector form as
wherec,, andc,, are complex constants. Since these con-
stants and the eigenvalues are arbitrary, kheoliton solu- o exg2i(&2— p?)z+2it€]
tion to the Manakov system hadNéfree parameters, which (u*,v*)=i—=27 ,
can be compared with M parameters for the single- d costi2y(t+to+2£2)]
component NLS soliton. The complexity of the solution is
therefore rapidly increasing with. However, some free pa- o . ) ) )
rameters are actually trivial and can be eliminated by mean¥Néreé the initial position of the soliton is given by
of symmetries of the governing equations. These include afo=In(27/[c|)/27. The vector c=(cy;,C) has arbitrary
bitrary displacements it andz, the scaling transformation COmPpleéx components, which together with the complex ei-
z—ulzt—put,u—u/y, and the Galilean  boost genvalue/=£+i 7 give us six parameters of the one-soliton
z—7,t—t+ vz,u—uexpitv+ir#z/2) with arbitrary param- solution. Note that each of these six parameters is explicitly
etersu and v. These symmetries are common to both therelated to a particular symmetry of the underlying equations:
NLS and the Manakov model. In addition, the Manakovthe phases of;; andc,; determine arbitrary phase constants
model allows a rotation of the polarization, i.e., of theu andv fields,|c| determines the initial positioty, the
(u,v)— (ucosh+uvsing,—using+vcosd), with an arbitrary parameter|cyq|/|c,,| determines the arbitrary polarization
angle #, which can be used to eliminate yet another freeangle of the soliton, and, finally, the imaginary and real parts
parameter. of the eigenvalue correspond to the above-mentioned Gal-
The IST for the Manakov system is known in two essen-ilean and scaling invariances.
tially different forms, based, respectively, on the Marchenko
integral equation and on the Hilbert transformation. Both
techniques involve rather tedious calculations, which we B. Two eigenvalues—the two-soliton solution
omit in favor of a discussion of the soliton solutions. A more
detailed account of the Hilbert transformation method can be

fo,und in Ref.[13]. An alternative approach based on Hiro- In accordance with what was said above, the most general
ta’s method was recently proposid ], although without the . o
form of the Manakov two-soliton solution involves twelve

closed-form expressions for the two-soliton solution that we ; . .
parameters, so it rather quickly becomes quite complex.

\rl]vgi p:g\‘j’%': gr?r?ﬁﬁi\ ?ﬁ?ﬁtlgnhcgwofhtgzigte;ngd ésatgztﬁ';gf tiSTherefore, we will first adopt some simplifying assumptions
b yinsig 9 $hat will allow us to obtain useful but yet nontrivial results.

lution. . . : L :
solutio ; . - First of all, soliton-soliton collisions have been well studied,
In this paper we will present the explicit form of the two- . . ; .
: ! : : o S0 we are not interested in solitons that move relative to each
soliton solution, and more importantly, discuss how it is re- . i
other. Thus we will assume that the eigenvalues are purely

lated to the scattering data. This will facilitate the under-; . : : ) :
imaginary and will consider comoving soliton stateseath-

standing of the complicated solution a great deal. Along the rlike solution only. The general two-soliton solution to the

way we manage to unify some previously published exac e T _
solutions[14—16, and show how they can be obtained as a anakov system satisfying this limitation can be written as

limit of the two-soliton solution. The solutions published in

[14-14 have it in common that they are stationary, i.e., the

pulse shapes do not vary with propagation, hence they de- (u*,v*)=4A"1 2 Qumn.s (7)
scribe only the particular kind of the interaction dynamics n=1.2

when the attractive and repulsive forces between two pulses

exactly balance. We will present the more general interaction

scenario when the pulses form an oscillating breather state&vherem=1 and 2 correspond, respectively,u@andv, and

(6)

1. The general solution
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Qmn= 7n( 71+ 172)*Crnr@€Xp2( 7t + 275 p)t) The third case is more .interesting.. It corrgsponds .to
N 5 5 C1,=C»1=0, so that the resulting two-soliton solution has six
+(=1)"n3n( 71— 72) (11+ 72)°(| C1pl free parameters. After dropping the arbitrary phase constants
H1Co12)C m X 2770 t)—2(—1)" in u andv, gnd making use of_ the scaling transforr_natmn to
|Canl ) Crma-n€XP(2773-n1) —2(—1) scale the eigenvalues according to the normalization condi-
X 7172071~ 12) (71+ 172)*Crnp tion 7, ,=3*+a, the resulting two-soliton solution has three

. . free parameters with being a fourth one. This two-soliton
X(C1nC13-ntC5Cos-n)eX(273-nt),  (8)  solution can be cast into the form
A= (n1+ 72) expd(n1+ 7))+ 45172 91+ 72)°

4n.[exp 6,)+ 2aexp — 6,)]exp 2i n°z
X (C11C1p+ C11Cypt+ Cp1C3,+ C5,Co0) 7l exp bz) R 07) 1exp(2i 7:2)

U= 2cosh 61— 0,) +exp 61+ 6,) +4a’exp(— 6,— 6,)’

X exp(2( 771+ 72) 1)+ (m1+ 72)*[(|Cyal*+[C2q?) (10
X exp(47,t) +(|C1ol*+|Cod?) exp(471t)]

+49175( 71~ 172)?|C11Co— C1,C24? v= 4772l exp(6) —2aexp 01)]er[12i 752) ,

+ (71— 1) *(IC11*+[Col®)(IC1d*+|Cpdl?).  (9) 200S01™ 6o+ expL O % 6 4aTexpl — 61~ 02)(11)

Here, the quantitie€,,, are the same as in Eqgl) and(5).

The so_lutio_n(?) contains ten freg parameters, as it aS-where we have introduced the notatiep=27,t+t,, 6,
sumesé;=¢,=0. However, according to what was said — 2ot +1,, ty=IN@7/lcyy)tb=In(274/|Cx2)). This solution

above, four of these parameters can be eliminated by obvioys, ¢ peen discovered previously by Tratnik and $ip8, and
symmetry transformation:_;. Further, the sum of the _eigenvall-n a simplified form ¢, =t,=0) by Christodoulides and Jo-
ues gives the soliton’s energy according to seph[15]. Menyuk[6] has presented a more general solution

+ o 2 2 — P
JZ([ul*+[v[F)dt=4(7,+ 72), which can be scaled out. {han Eqs.(10) and (11) by allowing complex eigenvalues,
Hence, there remain only five truly nontrivial parameters. ;o £1,=*+6.

The solution(7) is still too complex for straightforward A characteristic feature of the solutiqtO) and (11) is
applications. Let us now consider some special cases, in Ofyat jt is stationary, i.e., the corresponding intensity profiles
der_ to o_btaln trqctable but yet n_ontr|V|aI_epr|C|t solutions, 4q not change witlz (the more general solutions correspond-
which will be of interest for physical applications. ing to the complex eigenvaludé] are nonstationary; they
describe a collision between two solitgnghese profiles
include two-humped structurdd4,15. Such a solution in

Setting two of the four residues,,, equal to zero, one the form of two pulses which propagate as a stationary co-
retrieves previously known elementary solutions to themoving state, with no apparent interaction, does not exist in
Manakov system. We will briefly consider them here for thethe scalar NLS equation, and is therefore a peculiarity of the
sake of completeness. We can distinguish three separakdanakov model. A particularly interesting feature of this
cases. First, ift,,=c,,=0, we obtain once again the one- two-soliton solution seems to have been missed in previous
soliton solution presented above. Second,if=c,,=0, we  works. Starting with Egs.(10) and (11), one then sets
conclude thatv=0. Hence we obtain the ordinary two- t;=t,=3In(2a). Then one finds thai is symmetric and is
soliton solution to the NLS equation. antisymmetric with respect to=0:

2. Two nonzero residues

(4m1c08H2 7.t expli2722), 4 m,sinh( 2 71 t) exp(i2 752))
2a cosh2t) +cosh4at) '

(u,v)=+22a

(12

In the limit a<<1, this solution can be written in the approxi- ization of each soliton is slowly rotating with the period
mate simplified form, m/4a. Thus, the interaction between solitons in the Manakov
model gives rise not only to motion of their centers but also
(u,v)~[sechit—ty) = seckit +ty)]e* ”izzl\/i, (13)  to rotation of their polarizations. This fact has been observed
also in more general systems than the Manakov mgdél
where cosh(®)=1/(2a). In Fig. 1, this solution is displayed The fact that the interaction between the solitons could be
for different small values of. This shows that it is indeed canceled was originally observed numericdly6], but Eq.
possible to obtain two effectively noninteracting stationary(12) is the first analytical explanation of this phenomenon. In
pulses of the same shape, separated by an arbitrary distanggactical communication systems, this possibility to effec-
This requires, however, that their initial shapes and relativeively cancel the interaction between adjacent solitons by
polarization be carefully adjusted. Note also that the polarusing proper polarization looks quite promising. However,
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due to difficulties in launching the exact pulse shapes and 3. Four nonzero residues

polarization states a complete cancellation may not be pos-

sible to achieve in practical communication systems. Never- This is the most general case, which corresponds to the
theless, already without knowing the exact soluti@@) or-  solution(7) (recall that we are dealing only the purely imagi-
thogonal polarization of adjacent solitons has beemary eigenvalugs To cast the solution into a more tractable
demonstrated to increase the bitrate with a factor of nearly 2orm, we will now make an additional simplification, assum-
[8]. A physical reason for the effective absence of interactiorning all four residuesc,,, to be in-phasec,,=—ikm, with
between the two pulses in E(L2) is that we have a balance realk,,,. This choice removes only two free parameters, as
between repulsive and attractive interaction forces. The rege other two are the arbitrary phase constants ofutiaad
pulsive force originates from the components of the pulses ,, fields. Eventually, this leaves us with a soliton solution

which are out of phase, and the attractive force is pro-paying six free parameters. It is also convenient to introduce
duced by theu components which are in phase. Notice thatine vector notation for the residues as follows:
effects generated by competing interactions between two difg = (Ky1,k00), Ko=(Kyz,Kp5), SO that the two-soliton solu-
ferent components of solitons to a Ginsburg-Landau equatiofs | can'pa written as- -

were recently considered in R¢f.8].

in 2 i 2
2[e'27%(t @™ 22+ k1 e272) + €272 (1,0 2t ke ) |

(U0)= Gty nye 2t n2) 4 n e (n2= 1) 4 ne2m= 2 4 nycod22( - 75)) 4
|
where three. Finally, this number is reduced to two by normalizing
the eigenvalues as it was done above, is.=3+a and
7172 =3—a. The resulting soliton solution becomes
t1=[Kq|Ka|2( 71+ 172) —Ko(Ky - Kp) 2 7] ep— 5, 7273 9
1=[Kalko|“(71+ 12) —Ka(Ky- k) 772][2772(7]1_1_ 7]2)]2 - )
(15 kq,COSH 2t 77,) €% 717+ k ,cOSH 2t 77, ) €2 722
u(t,2)=2 1 ,
ty=[Ko|Ke|2( 1+ 79) — Ky(Ky - Kp) 2y ot 2Tt cosf2t) + n,costi4ta) + 5 n,co84za)
[271(71+ 72)]
(16 (21
2 .2 .2
B 717 12 Ko1Sinh( 2t 77,) €% 712+ K, sinh( 2t 7, ) €21 722
=l — 7% k12K 2( 1+ 75)2 _ Ko 72 225 71
1 (4771772(771+ 772)2) [IKal?[kal (771 + 72) v(t,z2)=2 1 .
cosh(2t) +n,cosh4ta) +-n,coqg4za)
~4(ky-ko)?m1772], (17 ? 2
(22)
|kaf? . .
”2=ﬁ, (18 writing the residue vectors ask;=|ky4(COSEr ),
1 sin(¢y,2) enables us to express the five parametiersk,,
Ik,|2 anda in terms of the two angleg, and ¢, as follows:
n3=4—2—, (19)
72 tan ¢, — ¢1)
2a= —————, (23
kl' k2 tar( ¢2+ ¢1)
"2 20
e 12— SiIP(2¢p5.9)
A rich variety of solitons can be analyzed using this rela- [ke.2  2Sirf(y— 1) oS py— ¢h1)COS o+ q)
tively simple explicit solution with its six free parameters. (24)

We defer this to a later work, and focus here on the interac-

tion between pulses with the same shape. Then we can fufFhis form of the Manakov two-soliton solution is appropriate
ther simplify the soliton by choosing a reference plane offor the study of interactions between arbitrarily polarized
polarization and a temporal constant. We do this so that thpulses, and it is possible to translate the two free parameters
u polarization becomes symmetric and thepolarization into a separation and a relative polarization angle between
becomes antisymmetric with respect tte 0. This choice the solitons. In particular, by noting that two sech pulses can
renders the denominator of the solutid®) an even function be described as sedhf 7)+ (t— 7) =4coshf)coshg)/

of t, i.e.,n;=1 andn,=n,. The numerators of the solution [cosh(2)+cosh(2)]we can identify the denominators of the
must then be, respectively, even and odd functions fofr ~ solution(21) and(22) with cosh(2)+cosh(2). This is valid

the u andv components. It is possible to show that thesefor a<1, when the pulse separation is large and we can then
restrictions reduce the number of the free parameters tarite the separation 2as a function okz as
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FIG. 1. The stationary solution
Eq. (12) for a=0.1 (dasheg, 0.01
(dash-dotteg 0.001 (dotted, and
0.0001 (solid). The u(v) field is
(ant)symmetric around=0.

u(®, vit)

°% 8 6 s 2 0 2 s 6 8 10
t
27~In[2n,+n,cog4az)] Moreover, it was showiil7] that two-humped solitons are
_ unstable in more generdghonintegrablg models as well.
—In 1 Sm(¢2+¢1)[1+cos(¢ — $,)coq4a2)] Nevertheless, this does not mean that the two-soliton solu-
a sin(¢,— ) 2 7t ' tions are of no physical interest, as this instability may be in

(25) many practically important cases a fairly weak effect, which
does not prevent the occurrence of two-soliton states in an

It is straightforward to show that this expression reduces toexperlment. Indeed, originally developed sohton' Iaser's pro-
the NLS resul{12] r=In|cos(22/a] in the limit ; 0. In du<_:ed two solitong19], although lasers producing single
fact, in this limit theu field (21) reduces to the NLS-two- Solitons have recently been available, {d8,20.

soliton solution, whereas the field (22) vanishes. Another ~ Another physically meaningful solution can be obtained
interesting limit is when the coefficient in front of the cos @S @ limiting form of the ones found above in the case of two

term of Eq.(25) vanishes, which occurs whdn andk, are eigenva_lues merging. anq bepoming degenerat(_a. Indeed, in a
orthogonal. This is the stationary, effectively noninteractingré@l optical communication line, one usually tries to create
solution (12) discussed previously, and it can be recoverec®n array of identical fundamental solitons. However, various
from Egs.(21)—(24) in the limit ¢,— w/2, ¢,—0. Finally, ~ small perturbations give rise to a “jitter” of the solitof],
one may also note that the simulated case in Fdf(also  Which will eventually lead to a small difference in the am-
discussed in Ref[2]) corresponds to Eqg21)—(24) with  plitudes and phases of neighboring solitons in the array. In
a~0.01 and¢,~1.0. the case when this difference is much smaller than the am-
To express the polarization state of the pulses in terms gblitudes of the solitons, their interaction is described by this
the residue angles, however, is more involved, especiallyimiting solution. Therefore, this seemingly degenerate solu-
since the polarization state may vary across a single pulsgion has, as a matter of fact, a special physical relevance.
We defer that, together with a more complete analysis of the For the NLS equation, the limiting form of the two-soliton

solution (21) and(22), to a later publication. solution was obtained already in the original work of Za-
kharov and Shabd6], and more recently a slight generali-
4. The two-soliton solution with merging eigenvalues zation with an additional free parameter was reported by

The physical relevance of all the particular solutions ob-Gagnonet al. [21]. It was found that, for this special solu-
tained above(as well as of those found in Reffl4] and  tion, the separation between the pulses grows witopor-
[15)) is limited by the well-known fact that all the two- tional to Irg, rather than varying periodically or linearly with
soliton solutions to the scalar NLS equation and the Manaz as is the case for the general two-soliton solution.
kov system are, strictly speaking, unstable, as their “binding Taking this limit of the solution described by Eq21)—
energy” is exactly equal to zero. Hence they can be de{24), which corresponds ta—0 and ¢, $,— ¢o, we find
stroyed by an arbitrary perturbation of the initial stffg.  thatu andv take the form
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%o 0 20 %0 0 20 %o 0 20 FIG. 2. The solution with

z z z merging eigenvalues, EQqY26)
and (27), for ¢,=0.3, 0.6, and
0.75. The upper row shows
lu(z,t)]?, and the lower row
shows|v (z,1)|.

. cog¢g) coS( pg)costt+cog 2 ¢)[izcosh —tsinht] 210
“(t'z)_“m COSH2t) + cOS 2g)[ 262+ 222+ L+ tarf(2g)12] © (26)

Sin( ¢p) —sirf( o) sintt+ cog 2 ¢o)[izsint—tcosh]
U(t,z):4 2 Vi 6'2/2, (27)
Jcog2,) COSH2t)+cog2¢h)[2t°+22°+ 1 +tarf(2¢)/2]

where 0< ¢o<w/4 is the only remaining free parameter. In the lindig— 0, we recover the known solution for the NLS
equation[21]. One may note that the extra free parameter of the solution found by Gagrabri21] destroys the symmetry
of the solution with respect to the poityt 0, and therefore it is not possible to retrieve it from E@4)—(24). However, using
the more general expressi¢i¥)—(20), one can retrieve those asymmetric solutions as well. In Fig. 2, the sol@®rand
(26) is shown for different values of the parametky.

IIl. CONCLUSION

In conclusion, we have derived the two-soliton solution to Manakov’s equations in the case of purely imaginary eigenval-
ues. The two-soliton solutions have been studied in more detail in some physically relevant cases, including the case of the
merging eigenvalues. The physical relevance of the solutions found has been discussed. The solutions are likely to be of value
for further studies of soliton interaction in the optical fibers. It is also worth noting that the obtained solutions can give clues
to the interaction dynamics between solitary waves in the frequently studied nonintegrable models that resemble the Manakov
system, see, e.4.2,6,9,17,1%.
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